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ABSTRACT 


Small, highly capable, and inexpensive unmanned aerial systems (UASs) are 


commonplace, easily modified, and being weaponized to aid the enemy in attacking U.S. 


interests around the world. NAVAIR and other stakeholders have multiple and available 


sensor and countermeasure capabilities that surveil, detect, track, and attack these UAS 


threats, but these capabilities lack a decision-aid or logic process that bridges the middle 


elements of the kill chain between detection to countermeasure response. This capstone 


project creates the logic for a decision process that transitions from the initial detection, 


characterization, and threat determination to a recommended response based on available 


sensor and countermeasure data. This logic process enables an operator to quickly, 


reliably, consistently, and repeatedly make the optimal tactical decisions in response to a 


dynamic threat environment. 


The products and deliverables include the concept of operations, functional 


architecture, design reference mission, modeling and simulation, decision-aid logic 


process, future research considerations, and recommendations. The concept of operations 


describes conceptual ideas relating to the manner of use, location, general logic process, 


and reference mission. This is the framework for the IDEF0 functional architecture 


diagrams, decision-aid diagrams, logic process, and modeling and simulation. 
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EXECUTIVE SUMMARY 


Enemies of the United States are using small, easily obtained, simply operated, 


and weaponized unmanned aerial systems (UAS) to exploit a current vulnerability in 


military and civilian defense systems. The UAS includes the air vehicle, radio 


communication equipment, possible weapon payloads, and the human operator. Their use 


potential is wide and includes urban and rural environments for both military and civilian 


activities.  


Stakeholders shared that multiple projects focusing on detection and/or 


engagement capabilities are in development or have been completed. However, they 


identified a significant capability gap in the middle of the kill chain where decision-


making and data fusion occur. The focus of this capstone project was to derive a solution 


that assisted in the decision-making process. The decision-aid logic process (DALP) 


would use fused sensor output data to analyze and provide recommendations for counter-


unmanned aerial system (C-UAS) action. The logic is intended to be used for an eventual 


decision-aid logic tool (DALT) created from the inputs, outputs and interactions of the 


process.  


The objective of this capstone project was to develop the concept of operations 


(CONOPS), high-level needs, and functional architecture for a process that addresses the 


capability gap. The CONOPS, high-level needs, and functions of the DALP were 


developed using assumed or notional sensor, data fusion, and countermeasure 


capabilities. The DALP was evaluated and refined using simulations of applicable kill-


chain scenarios. DALP functions to identify the contact, provide indication and scale of 


threat posture, and recommend actions to commonly encountered enemy UASs. The 


primary goal is to assist the operator by reliably and repeatedly making the best tactical 


decisions. 


The threat analysis indicated that the most likely threat is a fixed-wing or 


quadcopter-style UAS modified either to drop explosives or to crash and explode on 


impact. These methods of attack require the UASs to have no stand-off distance and to be 
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present at the target site to deliver their payloads. This was assumed when developing the 


modeling and simulation portion of this effort.  


Fused radar, acoustic, EO/IR, and electronic support measure (ESM) sensor 


output data was assumed to be available as indicated from stakeholder input and 


guidance. This data was used to form the inputs that the DALP uses to form solutions. 


The assumed data fusion capability was accomplished in a tool that was introduced in the 


Arteche et al. (2017) capstone thesis. This tool is referred to as the Data Fusion Tool 


(DFT) in this capstone. 


Outputs from the DFT provide the DALP with information that is used to identify, 


characterize, and assess characteristics and threat levels of UASs. The DALP uses this 


information to generate recommendations and alerts. The recommendations include both 


attack and employment suggestions. 


Multiple detect-to-engage sequencing functions are integral to the C-UAS kill 


chain. These can be accomplished with a single system or an integrated system of 


systems with linear and or/parallel functional processes. Functional responsibilities can 


be allocated to sensors, data fusion tools, decision aids, countermeasure systems, and the 


human operator. The DALP was designed to mimic and, with a follow-on effort, 


eventually replace the human role in UAS identification, classification, threat posture 


determination, and attacking. This is accomplished by the DALP continuously running 


through a series of logic questions and decision gates. The DALP makes the 


recommendations, but the operator still provides the final attack authority. The DALP 


requirements and functional architecture could be adjusted to form a fully autonomous C-


UAS system in the future. 


The functional architecture of the kill chain sequence was decomposed into 


detect, characterize, and act. The sensors and DFT were allocated to the detect functions. 


The DALP was allocated to the functions characterize and act. The operator and 


countermeasures were allocated to the act function for the authorization and launch, 


respectively. The DALP-derived sub-functions were based on the human operator’s 
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analysis responsibility and the reality that he or she has the potential to be overwhelmed, 


distracted, fatigued, and imperfect in decision-making.   


The modeling and simulation efforts focused on a limited but representative set of 


real-world UAS attack and C-UAS scenarios. The DALP was simulated conceptually, 


and its functionality was tested. The primary modeling and simulation parameters 


included UAS heading and flight path profiles as well as range limitations, initial start 


positioning, and IFF determination.  


It was shown that the DALP, as used in this capstone’s modeling and simulation 


efforts, functioned as planned in recognizing potential threatening UASs, escalating the 


associated threat level, and recommending deployment of countermeasures. Success was 


also achieved in distinguishing between a UAS that posed a threat, one that did not pose a 


threat, and a non-manmade object that did not pose a threat. There were decision gates 


that successfully removed the trackable object from the DALP sequence when it was 


applicable. The DFT outputs were conceptualized, and the resulting information 


derivatives were incorporated into the simulation.  


The solution, as generated by the team, has successfully demonstrated a 


potentially unique capability that addresses the stakeholder-identified need of filling an 


identified kill-chain capability gap. The DALP, in conjunction with the development of a 


follow-on effort of a DALT and graphical user interface (GUI), would significantly 


increase the ability and decrease the timing required for a single operator to positively 


disrupt enemy UAS threats. The DALP also has the potential to be configured to act 


autonomously in this kill-chain scenario. Future work is required for this functionality; 


however, this capstone provides the framework for such follow-on efforts. 
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I. INTRODUCTION 


 


Small group one and group two UASs are inexpensive, simple to operate, and 


easily obtained. Group one UASs are less than 21 pounds, whereas group two UASs are 


21 to 55 pounds (UAS Task Force 2011). These UASs have the capability of being 


outfitted with a variety of explosive, biological, and nuclear materials, and used as an 


offensive weapon against various targets. In addition, these UASs are used for enemy 


reconnaissance and surveillance activities. These offensive-threat UASs have the 


potential to be used in a variety of enemy attack scenarios, including flying into 


populated and vulnerable civilian areas, as well as into military compounds or even at 


active aircraft. 


Figure 1 displays the stakeholder-supplied C-UAS kill chain. The red circles in 


Figure 1 depict the major focus areas associated with the conduct of this capstone project. 


Multiple sensors and countermeasures are currently in use by the Department of Defense 


to detect and attack UASs. Efforts to integrate sensors and correlate tracking techniques 


and technologies are ongoing. However, there are some areas in Figure 1 where 


additional capabilities are needed, namely in data fusion and decision aids. For example, 


there is a need for a system that can integrate, correlate, and appropriately organize 


sensor data to be used as inputs to a decision-aid logic tool. A C-UAS decision-aid logic 


process (C-UAS DALP) could provide recommended courses of action based on a UAS’s 


derived threat potential. The C-UAS DALP, in conjunction with a future follow-on GUI, 


would likely and significantly increase the ability and decrease the timing required for a 


single operator to positively disrupt enemy UAS threats. 
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Figure 1.  NAVAIR C-UAS Kill Chain/Government LSI Approach. Source: Rockwell 
(2016). 


A. PROBLEM STATEMENT 


Small, highly capable, and inexpensive UASs are commonplace, easily modified, 


and can be weaponized to aid the enemy in attacking U.S. interests. As indicated by the 


stakeholders, multiple sensor technologies are currently available and utilized to surveil, 


detect, and track these potential UAS threats. However, a logical progression and 


associated tool is missing to bridge the gap in transitioning from detection of a potential 


UAS threat through positive threat identification and characterization to operator 


determination of a viable and available threat countermeasure response. The DALP in 


connection with a future implementation into hardware and software (DALT) would 


enable an operator to make the best tactical decisions reliably and repeatedly in response 


to a dynamic threat environment based on the sensor data available. 
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B. LITERATURE REVIEW 


Arteche et al. (2017) focused on developing a software system architecture that 


dealt with command and control, data fusion, threat evaluation, and weapons assignments 


for middle of the kill chain C-UAS operations. The summary of the Arteche et al. 


capstone is as follows: 


• The project was a high-level C-UAS software system architecture. 


• Innoslate was used for the detect, track, identify, and engage modeling and 


architecting efforts. 


• The project focused on the “middle” area of the kill chain, mostly 


including data fusion and command and control aspects. 


• Interfaces between software, hardware, operators, sensors, and 


countermeasures were identified and discussed. 


In addition to the thesis, a SharePoint site (C-UAS n.d.) containing sensor, 


countermeasure, and other C-UAS topics and data were provided for reference purposes. 


This information was important in defining the scope, avoiding duplicate efforts, and 


assisting with the stakeholder analysis. The thesis from Arteche et al. (2017) had high-


level focus looking into data fusion and threat assessment software system architecture. 


That effort indicated that there was an opportunity for a follow-on effort to develop a 


specific decision-aid process. In other words, that effort dealt with the “whats,” and 


additional work, was needed for the “hows” of the functions. Therefore, the focus for this 


capstone shifted to development of a specific logic process (DALP) and associated tool 


(DALT). 


C. SCOPE AND OBJECTIVES 


The objective of this capstone project was to develop the concept of operations 


(CONOPS), high-level needs, functional architecture, and logic process that can be used 


for a future C-UAS decision-aid logic tool (DALT) or as a basis for decision-aid software 


algorithms. The DALP and DALT architecture was developed to meet the goal of 
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increasing situational awareness and aid a single operator in making an appropriate 


decision for threat neutralization against an ever-evolving threat picture. 


Note, the scope of the capstone covered both the logic process (DALP) and the 


functional architecture framework for an eventual tool (DALT). The decision-aid logic 


was the basis for the process while the interfaces, inputs, outputs, and interactions were 


the basis for the future tool. 


The C-UAS DALP project team reviewed sensor inputs and capabilities to 


determine what data and information were required to develop the logic process and 


architecture. Historical, current, and projected UAS capabilities were used for a threat 


analysis that identified and assessed the threat potential. Sensor and countermeasure 


technologies were analyzed to identify current C-UAS capabilities. The team also worked 


with the stakeholders to identify and develop use cases based on anticipated enemy attack 


targets and methods. This was used to determine the following scope and objectives: 


• Assess the current threat. 


• Assess current sensor and countermeasure capabilities. 


• Develop a design reference mission (DRM). 


• Develop a CONOPS. 


• Identify top-level needs. 


• Conduct a functional analysis. 


• Develop the functional architecture for the DALT. 


• Develop the logic for the DALP. 


• Model the decision logic process with current threat and sensor 


technologies. 


Additionally, the scope was limited due to time, manpower, security 


classification, and system of systems availability constraints. For example, the DFT 
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variant from Arteche et al. (2017) is in a software architecture phase, and the hardware 


and associated functions and interfaces were not yet available. This limited the DALP 


and DALT to using conceptualized functions and interfaces with the various systems with 


which it interacts. Follow-on work is needed to integrate the process into a software or 


hardware tool. The C-UAS DALP project team did not: 


• Develop a software application, GUI, or the tool itself. 


• Develop any detailed designs for hardware, software, and their associated 


interfaces. 


• Perform a human factors analysis. 


• Use any classified data. 


• Utilize specific sensor or countermeasure performance against specific 


UAS threats. 


D. ASSUMPTIONS AND CONSTRAINTS 


These assumptions are valid throughout the entire capstone unless otherwise 


noted. The following general assumptions were used: 


• The C-UAS DALP and DALT will be a standalone module containing 


hardware and software. 


• All sensor, countermeasure, and UAS data was current at the time the 


research phase was completed. 


• All the sensors were assumed to be energized and searching while the 


DALP process was active. 


• The sensors modeled in this capstone detected the threat.  


• Sensor output was required to feed the decision logic process. 
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• Environmental factors that would degrade sensor performance were not 


modeled to simplfy modeling sensor performance. 


• The DALP was receiving all relevant information from the sensors when 


the target was within range.  


• Malfunctions and failures of sensors and countermeasures were not 


explored. 


• The content and timing of the recommendations differed based on the 


varying levels of sensor data.  


• All the countermeasures were functional and available at the start of the 


scenario and for any modeling and simulation.  


• The DALP did not control Rules of Engagement (ROE) nor decide to 


launch based on a collateral damage assessment, but rather provided alerts 


and recommendations.  


• Authorization of countermeasure deployment for enemy UAS engagement 


remains with the human operator. 


• The enemy UAS’s attack vectors were either a direct hit where the UAS is 


intentionally crashed into its intended target, or a simple ballistic drop 


where the UAS overflew its intended target to drop explosives.  


E. DATA FUSION TOOL ASSUMPTIONS 


The DFT was in the architecture development stages for both hardware and 


software. System interfaces and interactions were assumed and predicted to facilitate 


development of the DALT. A conceptualized architecture was used to define the 


relationship between the DALT and other peripheral systems. While the DALP and 


DALT were conceptualized as being a standalone hardware and software module that 


interacts with the operator, DFT, sensors, and countermeasures, future work might use 
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the tool in a different configuration. However, the decision and logic process should 


largely remain unchanged. The following assumptions were made: 


• The C-UAS DALP and DALT work in conjunction with the DFT. 


• The general functions and interfaces are assumed.  


• The DALT is linked physically and logically to the DFT. 


• The DALT is linked logically to the countermeasures and sensors via the 


DFT. 


• The display and operator workstation are integrated into the DFT.  


• DALP is independent of sensor control function.  


• The default sensor control is automated, but a manual control override is 


available. 


• The DALP controls sensor tasking and mode selection via the DFT 


command relays. 


F. SYSTEMS ENGINEERING PROCESS 


The project team utilized a modified Disciplined Agile Delivery (DAD) process 


described by Ambler (2013) that also used elements of the systems engineering process 


described by Benjamin Blanchard (2008). The prioritization for project tasking was 


determined by the project team with input from the stakeholders. The stakeholders were 


well informed and able to provide feedback often and without interrupting or delaying the 


process. The goal was to provide frequent timely and regular process updates. The 


customized DAD process is illustrated in Figure 2. 
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Figure 2.  C-UAS DALP Customized DAD SE Process. Adapted from Disciplined Agile 
Consortium (2013). 


1. Concept Phase 


Table 1 summarizes the inputs, outputs, and work products of the C-UAS DALP 


Concept Phase. The C-UAS DALP project began with stakeholder analysis and 


identification. Stakeholder comments, ideas, and requirements were evaluated to 


formulate the initial problem definition. Continued research, stakeholder communication, 


and subject matter expert (SME) inputs assisted with refinement of the problem definition 


as well as identifying and understanding current threats and capabilities. These activities 


provided the input required to define and analyze the needs and develop the CONOPS. 
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Table 1.   Concept Phase Summary 


Activity Input from Output To Work Product(s) 


Stakeholder 
Identification and 
Analysis 


NPS Advisors, 
Group Research, 
Stakeholders 


Threat Analysis 
and Capability 
Analysis, Concept 
of Operations, 
Needs Definition 
and Analysis 


Stakeholder 
Identification and 
Communication 
Plan 


Threat and 
Capability 
Analysis 


Stakeholders, C-
UAS SharePoint 
documentation (C-
UAS n.d.)  


Concept of 
Operations and 
Needs Definition 
and Analysis 


Capabilities and 
Limitations 


Concept of 
Operations 


Stakeholders, C-
UAS SharePoint 
documentation (C-
UAS n.d.), 
Capabilities and 
Limitations 


Needs Definition 
and Analysis 


Operational 
Diagrams and 
Concepts, Rules of 
Engagement (ROE) 


Needs Definition 
and Analysis 


Stakeholders, NPS 
Advisors, C-UAS 
SharePoint 
documentation (C-
UAS n.d.), 
Capabilities and 
Limitations 


Inception Phase 
Problem Statement 
and Needs 
Definition 


 


2. Requirements Analysis (Inception) Phase 


Table 2 summarizes the inputs, outputs, and work products of the C-UAS DALP 


Inception Phase. The inception phase corresponds to the modeling, planning, and 


organization step in the DAD framework. During this phase, the initial technology 


strategy, scope, and initial architecture were formulated and developed by the project 


team and communicated to the stakeholders. The C-UAS DALP system requirements 


were synthesized from the defined system needs formulated during the concept phase. 


The system requirements were decomposed and later allocated to functions to meet the 


system needs as necessary. A concurrent analysis of the system requirement constraints 


and tradeoffs was performed to develop and prioritize system requirements. The tradeoffs 
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were determined by stakeholder and project team collaboration to estimate the potential 


benefits and risks of choosing to use or discard certain requirements.  


The assumed functions and required decision-aid logic drove architectural design 


considerations. These were prioritized to properly allocate the requirements and assign 


resources for the tasks to be performed in the construction phase. The output of the 


inception phase was an initial functional architecture that was based on the developed 


system requirements. This initial functional architecture served as an input to the 


construction phase. 


Table 2.   Inception Phase Summary 


Activity Input from Output To Work Product(s) 


Requirements 
Definition 


Problem Statement 
and Needs Definition, 
Stakeholders and 
Stakeholder 
Documentation 


Requirements and 
Functional 
Analysis 


High-level 
Requirements 


Requirements and 
Functional 
Analysis 


High-level 
Requirements, 
Stakeholders 


Requirements and 
Functional 
Allocation 


Innoslate or MS 
PowerPoint Output, 
List of functions 


Requirements and 
Functional 
Allocation 


Innoslate or MS 
PowerPoint Output, 
List of functions 


Initial Functional 
Architecture 


Updates to 
Innoslate or MS 
PowerPoint Output, 
List of functions 


Initial Functional 
Architecture 


Updates to Innoslate 
or MS PowerPoint 
Output, List of 
functions 


Construction Phase Innoslate or MS 
PowerPoint Output,  


 


3. Construction Phase 


Table 3 summarizes the inputs, outputs, and work products of the C-UAS DALP 


construction phase. During the construction phase, the project team further defined and 


decomposed the functional architecture from the requirements and initial functions 


developed during the previous phase. The construction phase also incorporated the 


previously derived threat analysis, ROE, and defensive weapons capability to complete 
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the logic for a decision-aid logic process. A model was created to simulate and validate 


the required functionality of the C-UAS DALP. 


Model-based systems engineering (MBSE) was used throughout the process to aid 


in organization, design, and communication. Innoslate (2013), MS Visio, and  


ExtendSim (2013) tools were utilized for modelling and simulation efforts. The outputs 


of the construction phase were the functional architecture, logical and functional 


interfaces, and modeling and simulation with its associated testing efforts. 


Table 3.   Construction Phase Summary 


Activity Input from Output To Work Product(s) 


Functional 
Architecture 


Innoslate or MS 
PowerPoint Output, 
List of functions, 
ROE 


Functional and 
Logical Interface 
Definition, 
Modelling and 
Simulation, Testing 


Innoslate Output, 
Logic Diagrams, 
Microsoft Visio 
IDEF0s, Decision-
Aid Logic 


Functional and 
Logical Interface 
Definition 


Functional 
Architecture, MS 
Visio IDEF0s, List 
of functions, ROE 


Modelling and 
Simulation, 
Functional 
Architecture 
Updates 


IDEF0 updates, 
Interfaces, Early 
Modelling 


Modelling and 
Simulation 


Functional 
architecture, IDEF0 
updates, Interfaces, 
Early Modelling 


Functional 
Architecture 
Updates 


Model of Functions 
and Behavior 


Testing 


Requirements 
Specification 
Document, 
Modelling and 
Simulation 


Modeling and 
Simulation results Simulation Data 


 


G. SUMMARY 


A decision-aid logic process and eventual tool is required to help operators handle 


complex and dynamic scenarios where threats must be quickly assessed with proper 


actions taken. Available sensor data can be used to feed predetermined, but configurable 


decision criteria to aid an operator in identifying and assessing targets. The decision-aid 
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logic process uses sensor data to continuously monitor and assess contacts throughout a 


scenario, and the decision logic will recommend engagement of the target to the operator 


as needed. This capstone project developed the decision-aid logic process and functional 


architecture that could be used to develop a future DALP software application or  


tool (DALT). 
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II. CONCEPT REFINEMENT 


The concept refinement phase began with stakeholder analysis and included 


stakeholder identification and alignment with the needs analysis and requirements. 


Several stakeholders were identified and narrowed down to include those who were 


closest to the C-UAS program activities. 


A. STAKEHOLDER ANALYSIS 


Dr. Harold Kerzner (2013) defines a stakeholder as “individuals, companies, or 


organizations that may be affected by the outcome of the project or the way in which the 


project is managed.” Stakeholders for this C-UAS DALP project covered multiple tiers of 


the Department of the Navy (DON), which included Office of the Chief of Naval 


Operations (OPNAV) N98 Air Warfare Division and NAVAIR. Within NAVAIR, the 


primary sponsor was Naval Air Warfare Center Weapons Division (NAWCWD) 


Unmanned & Counter UAS Systems. Additional guidance and collaboration came from 


AIR 4.1 (Systems Engineering) and AIR 5.4/Atlantic Test Range (ATR) SMEs 


knowledgeable in C-UAS efforts located at the Naval Air Warfare Center Aircraft 


Division (NAWCAD) Patuxent River, Maryland. The following stakeholders were 


collaborated with: 


• NAWCWD UxS/C-UxS Director, China Lake, CA (Sponsor) 


• NAWCAD AIR 4.1.1.2, Patuxent River, MD 


• U.S. Army Aviation and Missile Research, Development, and Engineering 


Center (AMRDEC) 


• NAWCAD, AIR 5.4, ATR, Patuxent River, MD 


• Air Force Research Laboratory (AFRL), Wright Patterson Air Force Base, 


Dayton, OH 


Several stakeholder meetings were coordinated and conducted by the project 


team. The C-UAS kill chain depicted in Figure 3 was the key topic during these 
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discussions. The Director of NAWCWD UxS/C-UxS program indicated there are many 


types of sensors available as well as many types of solutions to complete the kill chain. 


No single sensor or kill chain would be universally effective for all threats, so they 


adopted a multi-sensor and countermeasure package. However, the kill chain was missing 


a critical piece—the intelligence and decision-making in the middle, depicted in Figure 3. 


 


Figure 3.  Traditional Kill Chain with Weakness Identified 


The stakeholders desired a process that collects and utilizes the fused data inputs 


to provide the operators with relevant decision logic that will aid them in their decision-


making processes for faster and more consistent responses. Multiple project team and 


stakeholder attended meetings revealed the following: 


• Sensors and sensor suites were being used in isolation. 


• Countermeasure systems were being used in isolation. 


• Isolated sensors and countermeasures offered limited and insufficient 


solutions. 


• Sensor and countermeasure systems utilized diverse output formats and 


software languages. 


• A universal C-UAS solution of “intelligence in the middle” was needed. 
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• There was a need for a decision-aid logic process that automates an 


operator’s normal decision-making processes for assessing target threat, 


attempting target identification, and weapons pairing. 


• A signal processor and data fusion system were needed to provide relevant 


information to the decision-aid logic process. 


Since multiple organizations were already conducting research on data fusion, the 


stakeholders and the C-UAS DALP project team decided to focus on a decision-aid logic 


process. This prevented duplicate efforts and was more appropriate for a nine-month 


project timeline. Figure 4 illustrates where the data fusion and decision-aid logic process 


are being implemented in the kill chain with much more sensor and countermeasure 


integration when compared to the legacy kill chain. Note, the operator and C-UAS DALP 


share a certain degree of functionality depending on how automated the system is. 


 


Figure 4.  Updated Kill Chain with Data Fusion and Decision-Aid Logic Process 
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On a separate occasion, members of the project group met with Army 


stakeholders at the ATR facility in Patuxent River, Maryland, and discussed the Army’s 


perspective on C-UAS. The Army stakeholders shared several concepts of identification 


for various air contacts, including birds and UASs, but cautioned that a lot of the data is 


classified at the SECRET level. The team decided to avoid any classified data and 


consulted the security classification guide to ensure compliance. 


After multiple discussions with the stakeholders regarding current kill chain 


capability limitations and the focus and content of future work, the following 


determinations and recommendations were made: 


• The kill chain already has several sensor and countermeasure solutions 


that precluded the need to devote additional efforts from the DALP team. 


• The kill chain suffers when operators get overwhelmed by large numbers 


of contacts or become distracted. 


• The kill chain suffers when operators are not adequately trained to utilize 


all the sensors and countermeasures. 


• The middle of the kill chain that included data fusion and decision-aid 


logic process was lacking and would benefit from additional efforts. 


• Ongoing research and development of the data fusion capabilities exists 


but not for decision aids, and any effort to develop a decision-aid logic 


process would be beneficial. 


• The DALP would require a functioning data fusion system to operate 


effectively.  


• The DALP effort would require sensor data, including detection ranges, 


sensor types, sensor modes, and detection qualities from the existing 


sensor systems. 
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• The DALP efforts would require metadata for radar, acoustic, visual, and 


ESM detection characteristics and any other performance characteristics of 


existing UAS. 


• There are a variety of other C-UAS efforts, and it would benefit the DALP 


team to leverage and expand upon their researched and published data. 


• It was recommended we focus on three or four types of sensor/


countermeasure systems such as radar, acoustic, ESM, and EO/IR to limit 


the scope. 


B. CONCEPT OF OPERATIONS 


The overall objective of this work was to provide a decision-aid logic process to 


bridge the gap in transitioning from detection of potential UAS threat through positive 


threat identification and characterization to operator determination of a viable and 


available threat countermeasure response. This decision-aid logic process would enable 


an operator to reliably and repeatedly make the best tactical decisions in response to a 


dynamic threat environment based on the sensor data available. The three main functions 


of the DALP are 1) to provide an indication of what it determines the contact to be, 2) 


provide a recommendation for the optimal countermeasure employment as needed, and 3) 


provide an indication and scale of the threat posture with a recommendation to attack. 


The second function primarily determines and suggests the best available countermeasure 


as well as the optimal launch characteristics. The third function primarily determines the 


threat posed by a contact and provides alerts and suggested actions to the operator. 


Once a target is detected, the sensors provide additional data to the DALP for 


analysis. Depending on the information provided, the DALP will provide an indication of 


what it determines the target to be based on target characteristics. This indication has the 


capability to facilitate and mature target classification throughout the scenario. For 


example, the DALP initially indicates an unknown airborne object has been detected. As 


sensor data builds and UAS attributes are observed, the DALP will recommend that the 


object be classified as a possible UAS, and then potentially to a probable quad-copter 
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based on the available sensor data. Due to the limitations of current sensor technology, 


the ultimate positive visual identification of the both the UAS model and payload, if 


required, will be done by the operator.  


Recommending the best available countermeasure and employment parameters is 


accomplished by using the available sensor data in conjunction with the available 


countermeasures. This includes target closure rate, minimum and maximum 


countermeasure ranges, locations of obstructions, and any other relevant data.  


The third function provides the operator an indication of threat-like activity and 


attack recommendation. The operator can determine what is considered threat-like and 


can include factors such as ranges, altitudes, closure rates, and swarm characteristics. 


When the target exhibits threatening behavior, the DALP alerts the operator via the DFT. 


Additionally, if the targets meet any user specified rules of engagement (ROE) metrics, 


such as the closest point of approach (CPA) range, the DALP will recommend an attack. 


Until this system is fully autonomous, the decision to attack is up to the human operator 


to ensure that collateral damage risk is minimized.  


Figure 5 illustrates the notional kill chain logic. When the initial radar detection is 


determined to be valid, it is forwarded on and analyzed. The DALP attempts to gather 


more information from other sensors to classify the contact. The DALP is also searching 


for threatening characteristics, such as a weapon, rapidly closure rate, or swarm-like 


activity. Once a threat is detected, whether it is from identifying a weapon or from target 


motion analysis (TMA), the DALP will recommend the ideal countermeasure selection 


and employment parameters. Once the target has met the predefined ROE, such as 


crossing a standoff range, the DALP will recommend an engagement. The red arrows 


represent a feedback loop indicating the DALP will continue to cycle to gain more 


information as necessary. 
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Figure 5.  Notional Kill Chain Logic Diagram 


The three phases of the kill chain are to detect, characterize, and act. The phases 


are illustrated in orange, blue, and green, respectively. The detect phase is always 


occurring, and the remaining two phases only occur when a valid return is present for 


analysis and decision making. 


The concept included an enemy attacking a protected target utilizing a single or 


swarm of weaponized UASs. All the sensors are energized and in a search mode. As a 


potential target approaches and is detected by various sensors, the DALP analyzes the 


available sensor data to provide information and recommendations to the operator. The 


DALP is analyzing target characteristics such as speed, distance, altitude, size, behavior, 


emitters, frequencies, and other data that is used in target characterization. The available 


sensors in this scenario are radar, acoustic, electro-optical/infrared (EO/IR), and 


electronic support measures (ESM).  


The nominal chain of events starts with a valid sensor return, most likely from a 


broad area sensor such as the radar or acoustic, as illustrated in Figures 6, 7, and 8. 


Immediately, the other sensors such as EO/IR or ESM will focus their detection ability 


down that bearing line to provide corroborating data. These sensors continuously feed 


information into the DALP that, in turn, provides the operator with the most likely 
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classifications and recommendations, whether the target is a threat, bird, or friendly unit. 


The sensors will also switch modes as necessary, such as the radar transitioning to 


inverse synthetic aperture radar (ISAR) mode, to amplify information. The required 


actions are to continue monitoring, drop the track, or attempt to use countermeasures to 


destroy the threat. Figures 6, 7, and 8 illustrate this chain of events for a high-speed 


inbound scenario. Refer to Appendix A for additional diagrams and scenarios. 


 


Figure 6.  Detect Phase in High-Speed Scenario 
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Figure 7.  Characterize Phase in High-Speed Scenario 


 


Figure 8.  Act Phase in High-Speed Scenario 
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Depending on how many contacts are in the vicinity, the other sensors may not be 


available to assist the original detection sensor. It takes time to focus and collect target 


information with the other sensors, and if there are several contacts, there simply is not 


sufficient time. In this scenario, the DALP will recommend that the sensors continue to 


track with the target with the original sensor and allocate the other sensors to the highest 


threat contact it detects. The threat hierarchy is dictated primarily by closure speed of 


targets not determined to be friendly, and the DALP assigns the highest threat to 


whichever contact is on a flight profile that will overfly or crash within the defended 


perimeter. If there are multiple targets inbound, the DALP will look at whichever one is 


expected to impact first. If there are no non-friendly targets inbound, the DALP resorts 


back to utilizing any available sensors to characterize the contacts. 


There may never be a 100% positive identification; however, the DALP analyzes 


and makes recommendations at any point from the initial detection until the target is 


destroyed, dropped, or has moved out of range of the sensors. The choice to utilize 


countermeasures is dictated by the ROE, which will vary in how restrictive it may be 


from location to location. For example, at one location, it may be dictated that the 


countermeasures shall not be employed until the threat is within one nautical mile (nm) or 


much closer. In these cases, the underlying decision logic process remains unchanged, 


but the ROE directed standoff ranges can be updated by the operator through a 


configurable mission file. 


The benefit of the DALP is the ability for an operator to reach the correct decision 


repeatedly, consistently, and reliably when faced with a dynamic and stressful situation. 


Moreover, this process aims to reduce operator workload, prevent task saturation, and 


avoid incorrect decisions. The DALP uses available fused sensor and countermeasure 


data to analyze and provide recommendations to the operator for decisions in the C-UAS 


environment. 


C. THREAT ANALYSIS 


UAS attacks have occurred almost daily over the last year or so. Unmanned aerial 


system use was estimated at 10 to 15 per day in Islamic State in Iraq and Syria (ISIS) 
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occupied Mosul but has declined to almost none once allied forces re-established their 


presence in Mosul (Moore 2017). This is indicative of the intent of ISIS to place more 


and more reliance on inexpensive UASs as their financial resources are dwindling. 


Research has revealed the use of both fixed wing and quadcopter style UASs. Weapons 


delivery methods include the dropping of grenades or other small munitions and a less 


frequent deceptive tactic of hiding explosives in UAS sub-systems and detonating when 


they are dismantled, presumably by the enemy. It is expected that ISIS will refine and 


expand the fly-in and drop technique, but the hiding of explosives may not become an 


effective tactic (Rassler 2017). The expected style of attack is either a direct impact by 


the UAS or the UAS maneuvering into a position close enough to drop a weapon. Both 


expected attack styles require the UAS to be very close. This will be assumed for 


simulation and analysis purposes. 


Captured ISIS documents indicate plans to use fixed wing SkyHunter, Figure 9, 


and X8 Skywalker UASs, Figure 10, for attack missions (Rassler 2017). The SkyHunter 


can function up to five miles from radio controller. The X8 Skywalker long range 


surveillance UAS can function up to 30 miles from radio controller and has a three-hour 


endurance limit on a single charge. It can also carry a payload of 6.6 pounds. One blog 


indicated that a recent 62-mile flight was accomplished as identified on the website 


Conservation Drones (2016). UAS capabilities in terms of endurance, range, and payload 


are certain to increase significantly in the near future and will be exploited. In general, 


current mass-produced UASs can reach velocities near 70 MPH and altitudes 


approaching 10,500 feet with several allowing image transmissions to multiple handheld 


devices such as iPhones or tablets. Newer quadcopters are capable of 360-degree 4k 


video output. Operating ranges from radio controller vary depending on equipment, but 


the mass-produced varieties seem to be about one mile. 
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Figure 9.  Skyhunter Personal UAS. Source: Skyhunter (n.d.). 
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Figure 10.  Skywalker X9 Personal UAS. Source: Skywalker (n.d.). 


Quadcopters are known to be in use by both ISIS and Hezbollah. Some are very 


similar to DJI Phantoms and have been outfitted with a release mechanism to 


strategically drop explosives. Terrorists are using social media to encourage “Jihadists” to 


use inexpensive UASs to cause damage wherever people are gathering. The threat to 


highly populated venues such as sporting events, concerts, and tourist interests are among 


the most worrisome and hardest to counter. The risk level of collateral damage plays a 


significant role in the choice of deployable counter weapons.  


Threat analysis research produced a huge amount of data for a variety of Group 


one UASs. The available data includes UAS range, endurance, speed, altitude, and 


payload as well as UAS weight and the required communications frequencies. Other key 


pieces of data researched was radar cross section (RCS) and size and performance data 


(Alexander 2016). RCS data for three of the four A/C used for the man portable airborne 


radar system (MARS) testing was also made available. RCS at range data for both the 


man portable airborne radar system kit (MARS-K) and 2026B as well as the Blighter 


A400 Series surveillance system yielded useful data also. The available data will be used 


to determine the boundaries for the assumed threats. The assumed UAS threat will consist 


of random motion, linear direct incoming motion, variable altitude, and single as well as 


swarm attack scenarios. Table 4 summarizes the capabilities and limitations of the 


expected UASs to be used. 
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Table 4.   Capabilities and Limitations of UASs. Sources: DJI (2016, 2017a-e), 
Marcus (2016), Turbo Ace (n.d), Parrot (2017), and Yuneec (2017). 


Group One 
UASs 


Range 
(miles) 


Endurance 
(minutes) 


Max 
Speed 
(mph) 


Max 
Altitude 
(feet) 


Max 
Payload 
(lbs) 


Comm 
Frequencies 
(GHz) 


DJI Phantom 3 
Professional 1.24 23 35.7 19,600 2.8 2.4 


DJI Phantom 3 
Advanced 1.24 23 35.7 19,600 2.8 2.483 


DJI Phantom 4 3.1 28 44.7 19,600 3 2.4 
Marcus Zypher 
2 25 60 90 10,000 5 900 


Parrot AR 2.0 1.55 12 24.6 300 0.9 2.4 
Turbo Ace 
X830-D 1.24 25 44.7 19,600 2.4 2.4 


MicroPilot 
MP-Vision 
Glider 


1.55 55 37.2 10,000 6 2.4 


Lehmann LA 
300 15.5 45 49.7 11,000 1.6 N/A 


DJI Inspire 1 1.24 18 49.2 14,700 6.5 
5.725 – 
5.825 or 2.4 
– 2.483


DJI MATRICE 
100 3.1 40 49.2 19,600 5.2 


5.725 – 
5.825 or 2.4 
– 2.483


DJI Phantom 3 
Standard 0.62 25 35.7 19,600 2.7 


5.725 – 
5.825 or 2.4 
– 2.483


D. SENSOR ANALYSIS 


Radar, acoustic, EO/IR, and ESM sensors are commonly used to detect UASs and 


are the anticipated sensors used in the C-UAS DALP. Each sensor has capabilities and 


limitations depending on the environment and target characteristics such as size, radar 


cross section, speed, emissions, communication links, propulsion methods, maneuvering 


capabilities, and other characteristics. Each of these sensor types could be employed to 


enhance the ability of the DALP to perform its intended function. A summary of each 


sensor type for UAS detection and identification is provided. The specific UAS 
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parameters used in the DALP to add fidelity to identification and threat characterization 


efforts include but may not be limited to range, bearing, velocity, system type and model, 


motion, size, control and communication requirements, auditory, and heat signatures. 


Recent MARS testing indicted a detection range for flying vehicles with similar 


RCS as group one UASs is on the order of 1.86 miles. Elevation of the tested system has 


a 60-degree limit, so altitude of incoming UAS is very relevant. The possibility exists that 


if a UAS could reach an altitude beyond the capability of radar and do so undetected, it 


could potentially fly to any target inside that envelope. The detectable velocity for the 


same RCS is 44.7—89.5 miles per hour (MPH). Table 5 summarizes the MARS 


capabilities and limitations collected from test results (ELAT 2016). The modeling and 


simulation efforts did not account for altitude as all simulations were 2-dimensional only. 


Table 5.   MARS Test Results. Source: ELTA (2016). 


# Test: System tested (If Applicable) Result 


1 Max. Detection Range:  


 DJI Hexacopter S-900 1.49 – 1.74 miles 


 DJI Quadcopter Phantom 1.06 – 1.12 miles 


 Cessna 152 3.91 – 4.04 miles 


 Model Plane 1.73 – 1.99 miles 


2 Elevation Coverage up to 60deg 


3 Azimuth Coverage 360 


4 Azimuth Accuracy <1 deg 


5 Range Accuracy <10 m 


6 Elevation Accuracy <0.5 degree 


7 Target Velocity:  


 DJI Hexacopter S-900 13.4 – 33.6 MPH 


 DJI Quadcopter Phantom 13.4 – 33.6 MPH 
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# Test: System tested (If Applicable) Result 


 Cessna 152 89.5 – 134.2 MPH 


 Model Plane 44.7 – 89.5 MPH 


 


Acoustic detection and identification systems provide complete spherical 


coverage, though the maximum range is highly affected by ambient noise levels and 


obstructions. Typically, a conical dish funnels sound into a microphone to concentrate 


distant sound and block out ambient noise. Even with a conical dish, the nominal distance 


for detection and/or identification is in the order of hundreds of yards so this sensor may 


be limited to short ranges. However, since each UAS emits a unique audible signature 


that can be cataloged and stored in libraries of UAS models, a distinct advantage of 


acoustic sensors is the capability to make positive identification possible within just 


fractions of a second of detected audio. In addition, multiple microphone systems are 


very effective at pinpointing a range and bearing to the source. Therefore, acoustic 


sensors are better suited as a secondary sensor that provides additional classification 


capabilities and amplifying information (Lockheed Martin 2016). 


Infrared systems detect heat sources such as jet engines, ground vehicles, and 


personnel. Some handheld devices state the ability to detect a person out to 1.55 miles. 


Electric Class I & II UASs do emit a heat signature, though much smaller than internal 


combustion engines. The Talon 120LE (Class I UAS), for example, can be tracked with a 


90% confidence out to approximately 2.17 miles with the Spynel-C IR System. Table 6 


summarizes data relating IR systems versus UASs (Shen 2016). 
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Table 6.   IR Systems Max Trackable Range. Source: Shen (2016). 


IR System UAS % Tracked at 


Range 


Range 


(miles) 


Spynel-C Talon 120LE (Class I) 89% 2.17 


Spynel-S Talon 120LE (Class I) 82% 0.93 


L-3 360HD Talon 120LE (Class I) 100% 0.31 


NVESD 360HD DJI Phantom Octocopter (Class I)  0.48 


NVESD 360HD Surrey (Class I)  0.80 


 


Optical cameras record an image containing a known number of pixels, with 


higher-fidelity, military-grade cameras recording the most pixels per picture. Those 


pixels relate to a specific area of the picture that is directly related to the distance of the 


object from the sensor. For example, a near field object may have a pixel height in the 


realm of tenths of an inch. However, a far field object may have a pixel height about a 


foot. Class I and II UASs are typically less than two feet tall. At multiple-mile distances, 


the entire UAS may be enveloped within five to eight pixels, which would be difficult to 


distinguish from background clutter. The camera capability must be matched to and is a 


function of software that can identify between specific shapes and movements (Jesse 


Drake, NAVAIR 4.73 Photography Lead, personal communications, October 11, 2017). 


E. COUNTERMEASURE ANALYSIS 


The DALP will use the inputs from the sensor systems to determine the most 


logical and effective UAS countermeasure to use to mitigate the threat. There are many 


different types of countermeasures used today by civilians, police, and military forces. 


Each type of countermeasure has distinct advantages and disadvantages.  


Electronic countermeasures (ECM) are a popular choice for C-UAS efforts as 


they do not include any physical or kinetic components. ECM is used to “prevent the 
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successful reception or transmission of data. This may mean simple narrowband jamming 


(denying the platform the use of the jamming spectrum) or more sophisticated 


approaches” (Birch, Griffin, and Erdman 2015, 19). Global positioning systems (GPS) 


used by UASs can be jammed or “spoofed” to make the UAS believe it is in a different 


location or to force it to move away from its intended target. High-power microwaves 


(HPM) and high-power electromagnetic weapons (HPEW) are non-kinetic but can cause 


physical destruction of the UAS’s unprotected electronics. Jamming is likely to be used 


in scenarios where kinetic countermeasures are not a viable option, like crowded public 


areas. Legacy jamming systems are typically ground based and used for manned aircraft 


or missile defenses. A jamming system specifically designed for C-UAS applications is 


the Battelle Drone Defender shown in Figure 11. This is a handheld, highly portable line-


of-sight jammer that is well suited for highly populated, public events where law 


enforcement officers require mobility. The Drone Defender is an attachment for 


compatible rifles that adds the capability to jam GPS and industrial, scientific, and 


medical (Industrial, Scientific, and Medical (ISM) band) communication signals. 


 


Figure 11.  Battelle Drone Defender. Source: Battelle (2017). 
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Kinetic countermeasures (such as missiles and guns) are most commonly used in 


military scenarios where use of deadly force is necessary. Since guided missiles often use 


Command Line of Sight (CLOS) systems that “require that the system track both the 


target and the missile,” line of sight is a necessary limitation that is a detractor against 


adopting CLOS systems (Birch, Griffin, and Erdman 2015, 17). “Dumb” weapons, such 


as machine guns, cannons, and small caliber guns, can also be used as a kinetic 


countermeasure to bring down a UAS if necessary. However, they are ineffective and 


inaccurate at long range, and multiple rounds would need to be expended to be an 


effective countermeasure. 


Net systems are becoming more popular for use in urban environments where it 


could be dangerous for the UAS to become unpredictable and fly out of control and into a 


densely populated area following a kinetic or jamming engagement. One downside of 


choosing a net capturing system is that the effective weapon range is relatively limited. 


There are a few different deployment options for nets as projectiles. The net can be 


deployed from a ground-based autonomous or human operated system or by another 


UAS. Net systems are typically a single net per shot and require a manual reload to 


deploy another net. This significantly hinders its effectiveness against a swarm attack. 


There are advanced systems that may be more effective, such as the SkyWall 100 anti-


UAS gun, which uses a net with embedded ECM capability. Another example is the 


Michigan Tech Drone Catcher, shown in Figure 12, that uses a UAS that can fire a net 


and drag another UAS to a safe location (Atherton 2016). 
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Figure 12.  Michigan Tech Drone Catcher. Source: Atherton (2016). 


The final countermeasure type identified during research are line-of-sight lasers. 


Similar to ECM systems, lasers can harm or disrupt electronics by overwhelming EO/IR 


sensors on the UAS with a low-powered laser. However, there are disadvantages with 


line-of-sight laser use. Higher power lasers can permanently destroy the sensors and other 


onboard electronics but do so at an increased risk of collateral damage. Laser 


effectiveness is influenced by the UAS physical properties and inherent vulnerabilities. 


Furthermore, they require line of sight and tend to be expensive. The primary advantage, 


though, is that lasers have longer ranges and higher accuracy than net-based or kinetic 


countermeasures 


In summary, the four viable and available countermeasures chosen for use in the 


C-UAS DALP capstone are jammers, kinetic weapons, net guns, and lasers. Jamming is 


useful for short to long-range scenarios where the use of kinetic weapons is not 


permitted. Kinetic and laser weapons, when authorized and available, are useful for line-


of-sight engagements where it is acceptable for the UAS to crash in the vicinity of 


engagement. Lasers typically have longer range than kinetic weapons. Net guns are 


useful if a controlled or contained descent is desired but have short ranges and are 


vulnerable to swarm attacks.  
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F. C-UAS KILL CHAIN LOGIC 


The DALP will function in the space defined by enemy UASs being detected and 


characterized by sensor technologies and the decision to engage with appropriate 


weapons. The kill chain design for this project will end at the point where the C-UAS 


DALP provides a suitable response recommendation based on sensor data indicating 


target threat and the available weapons capabilities. The C-UAS kill chain design will 


utilize currently available sensor technology outputs to establish an incoming threat 


detection capabilities window. Figure 13 and Figure 14 depict notional sensors and 


countermeasures interacting with the DALP and working through C-UAS kill chain logic. 


The alerts and display layouts used are for illustrative purposes and have not been 


optimized based on human-machine interface considerations.  


 


 


Figure 13.  Detect Phase of C-UAS Kill Chain Logic 
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Figure 14.  Characterization Phase of C-UAS Kill Chain Logic 


The kill chain begins during the detect phase (Figure 13) with a valid sensor 


contact (i.e., radar indication of an unknown airborne object). The sensors detect the 


contact and sends it to the DFT to fuse and relay the data. The DALP and operator 


receive the fused data and transition to the characterization phase (Figure 14). The DALP 


attempts to identify the UAS based on ESM, acoustic, EO/IR, radar, and IFF sensor data 


provided by the DFT. The intent is to observe target characteristics that determine 


whether the contact is a friend, neutral, or enemy threat. The DALP accomplishes this by 


observing the target’s position, course, speed, if it is closing or opening, sound profile, 


emitter data, and if it is traveling with a swarm. Once the DALP is able to make a threat 


determination, it transitions to the action phase (Figure 15). The DALP will recommend 


attacking, continue monitoring, or dropping the track (Figure 16), thereby completing the 


kill chain. If it is recommending an attack, it will also recommend a countermeasure 


selection and employment characteristics (Figure 15). Recommendations and alerts that 


result from the execution of the decision-aid logic process are outputted from the DALT 


and sent to the DFT for display to the operator. 
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Figure 15.  Act Phase of C-UAS Kill Chain Logic 


 


Figure 16.  Drop Track and Return to Detect Phase of the C-UAS Kill Chain Logic 


The window of opportunity to neutralize threats is dynamic. It shrinks as a threat 


approaches, dependent on the UASs’ speed. It is also affected by weapon choice in that 


each neutralization choice has capabilities and limitations such as minimum and 
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maximum ranges, intercept speeds, employment envelopes, time to intercept, max flight 


time, reloading time, and time required to arm. The reaction window is further limited by 


the time it takes for the operator to decide and then to act. The intent of the DALP is to 


make the human decision-making process as simple as an authorization after the DALP 


has determined the incoming UAS is a threat and recommended an engagement. The 


operator only needs to verify ROE and collateral damage mitigation and then execute the 


engagement. 


G. KILL CHAIN CAPABILITY GAP 


A primary capability gap in the kill chain is the lack of a decision-aid logic 


process. This process would allow an operator to reliably and repeatedly assess available 


data in order to assess threats correctly and quickly, and then respond with the 


appropriate countermeasures. Moreover, the stakeholders have also indicated operators 


get overwhelmed when there are large amounts of contacts, and they lose their tactical 


situational awareness resulting in decreased kill chain effectiveness and increased 


vulnerability.  


H. SUMMARY 


 A broad range of small unmanned air system threats exist and are in use today. 


Countering those threats are challenging based on current sensor capabilities and UAS 


characteristics. A decision-aid logic process will aid an operator in the process of 


characterizing and defeating UAS threats. This DALP may also form the basis for an 


automated logic that can be used by an operator to defeat a large swarm or saturation type 


UAS attack. The next section of this report will refine the threat and define requirements 


for a decision-aid logic process. 


The key concept refinement takeaways: 


• There are plenty of sensors and sensor and countermeasure options, but 


they typically operate in isolation and would benefit if they were 


integrated. 
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• There is a need for decision-aid and data fusion capability in the middle of 


the kill chain. 


• The logic structure does not change due to varying target data or rules of 


engagement. 


• The quantity and quality of the information provided by the sensors will 


dictate when and what the DALP recommends. 


• The DALP does not currently have the autonomy to attack, but rather 


gives the recommendation to attack when it detects a threat.  


• It is up to the human operator authorize the engagement. 


• There are user configurable parameters that the DALP will alert the 


operator for if any of those parameter thresholds are met.  


• The initial recommended parameters set is closure speed, minimum 


anticipated closest point of approach, range, and swarm characteristics, 


which are covered by the DALP logic. 


The capability gap analysis resulted in the following determinations:  


• The DALP will use target data from the DFT and countermeasure data to 


provide alerts and engagement recommendations to the operator. 


• DALP will reduce the operator’s workload, chance of being overwhelmed, 


and chance for error. 


• DALP will improve combat effectiveness and reduce vulnerability to 


single or swarm UAS attacks. 


• DALP will effectively address the middle of the kill chain and the orient 


and decide portion of the OODA loop. 
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• DALP will reliably, repeatedly, consistently, and correctly recommend a 


choice for the operator in all phases of C-UAS. 


• DALP will be accurately modeled to provide important data for follow-on 


research. 
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III. FUNCTIONAL ANALYSIS 


The kill chain sequence consists of the detect, characterize, and act functions. 


These functions can be allocated to the five primary sub-systems—sensors, DFT, DALT, 


countermeasures, and operator. The following sub-system’s functions, interfaces, inputs, 


outputs, and interactions were identified and used to form the architecture: 


• Sensor(s): might be radar, EO/IR, ESM, acoustic. 


• DFT: combines sensor inputs and is the primary interface between the 


operator, DALT, and sensors. 


• Operator(s) and DALT: attempt to determine target identification and 


assess threat. 


• Countermeasures: could include kinetic, soft-kill, net. 


These sub-systems will be used to define and allocate the functions of the detect-


to-engage sequence. The DALT is intended to aid the operator in the execution of their 


functions, and therefore an accurate understanding of operator functions is needed to 


define the requirements for the DALT. In the list of functions, the DALT and operator are 


listed as the same sub-system based on the presumed commonality and overlap of their 


functions. In the next section, the DALT and operator will be assessed independently to 


confirm what functions may be performed by each sub-system.  


A. DETECT TO ENGAGE FUNCTIONS 


The functional allocation is decomposed into five main actors—sensors, DFT, 


countermeasures, operator, and the DALT. Note, the decision-aid logic process is 


intended to reduce the workload of the operator and therefore shares many of the same 


functions as the operator. As a result, the DALT shall be designed to perform as many of 


the functions allocated to the human operator as possible. Table 7 summarizes the sub-


system functions. 
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Table 7.   Sub-system Functions 


Nomenclature Function Quantity 
Sensors 
(Multiple) 
Radar 
EO/IR 
ESM 
Acoustic 
Camera 


Detect Targets (ESM, acoustic, Doppler, ISAR 
characteristics as a bearing or range) 
Track Targets (position, course, speed, altitude, and 
azimuth) 
Transmit Data to Data Fusion Tool (DFT) 
Process Commands from DFT (sensor mode, sensor 
scale, sensor sensitivities, threat library inquiries) 
 


Multiple 


Data Fusion Tool 
(DFT) 


Receive Sensor Data 
Correlate Sensor Data (track data from multiple 
sensors) 
Resolve Ambiguity (in sensor data) 
Display Target Track Data 
Receive Countermeasures Health/Stores Status 
Display Countermeasures Health/Stores Status 
Control Sensors (sensor mode, sensor scale, sensor 
sensitivities, threat library inquiries) 
Transmit Data to DALT and countermeasures 
(position, course, speed, altitude, azimuth, ESM, 
acoustic, Doppler, ISARE characteristics) 
Process Operator Commands via the DALT(sensor 
mode, sensor scale, sensor sensitivities, threat library 
inquiries) 
 


1 


Countermeasures 
(kinetic, soft-kill, 
net, etc.) 


Process DFT Target Data (position, course, speed, 
altitude, and azimuth) 
Transmit Health/Stores Status to DALT (BIT, Stores 
Inventory, Stores State, Countermeasures Mode 
(manual, automatic, on, off, standby) 
Process Operator Commands via the DALT (query 
stores status, track target, launch stores) 
Engage Target 


Multiple 
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Nomenclature Function Quantity 
Operator Monitor DFT Target Tracks  


Command Sensors via DFT 
Characterize Target 


• Assess Target Signature 
• Conduct Target Motion Analysis 
• Evaluate Threat 
• Classify Target 
• Identify Target 


Report Target Tracks (position, course, speed, 
altitude/azimuth, and track identification, track 
behavior) 
Apply Rules of Engagement (based on mission, target 
behavior and signature, environment, population, etc.) 
Select Countermeasure  
(based on target motion, stores status, ROE, collateral 
damage assessment) 
Make Decision 


• Monitor 
• Drop Track 
• Release Countermeasures 


 


1 


Decision-aid 
Logic Process 
and Tool 


Monitor DFT Target Tracks 
Command Sensors via the DFT 
Characterize Target 


• Assess Target Signature 
• Conduct Target Motion Analysis 
• Evaluate Threat 
• Classify Target 
• Identify Target 


Prioritize Target 
Report Target Tracks (position, course, speed, 
altitude/azimuth, and track identification, track 
behavior) 
Apply Rules of Engagement (based on mission, target 
behavior and signature, environment, population, etc.) 
Recommend Countermeasure Pairing (based on target 
motion, stores status, ROE, collateral damage 
assessment) 
Recommend Decision to operator 


• Monitor 
• Drop Track 
• Release Countermeasures 


 
 
 


1 
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B. FUNCTIONAL ARCHITECTURE 


The functional architecture was used to depict, analyze, and provide feedback on 


the inputs, outputs, functions, interfaces, and data flow. Four IDEF0 diagrams were used 


to depict the functional architecture of the kill chain sequence and illustrate the role of 


DALT. These various levels of decomposition show the functional interactions, inputs, 


and outputs between the five sub-systems: operator, sensors, DFT, DALT, and 


countermeasures. It should be noted that in this architecture the DFT will serve as the 


primary interface between the DALT and the operator, as well as, the DALT and the 


sensors. 


The detect, characterize, and act functions of the kill chain were allocated to the 


components. The sensors and DFT perform the detect functions, which includes the target 


detection and data fusion. The DALT performs the characterize function. The DALT, 


operator, and countermeasures perform the act function. The DALT makes the 


recommendations, the operator authorizes launches, and the countermeasures perform the 


launch. 


Figure 17 represents the top-level interactions of the main components that form 


the kill chain sequence. This diagram depicts the flow of data and commands that are 


passed between the functions. Note, the italics in this section represent the inputs, 


outputs, controls, and corresponding information flow depicted in the IDEF0s. For 


instance, Sensor Stimuli is detected by a sensor and passed on to the fuse function 


performed by the DFT as Sensor Data. The Fused Sensor Data is an input to the analyze 


and recommend function of the DALT and is the information needed to execute the 


decision logic. The DALT analyzes target behavior, makes recommendations, and 


generates alerts. These Alerts and Recommendations are sent back to the DFT as an input 


that is in turn relayed to the operator as a Video and Sound Output. In its current 


implementation, the DALT can only recommend an attack. The operator is required to 


provide an attack authorization to execute the attack function. This is based on critical 


nature of the attack function and the need for the operator to confirm ROE prior to 


countermeasures employment. 
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Figure 17.  Top-Level Kill Chain IDEF0 
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The next IDEF0 in Figure 18 decomposes the top-level functions of the DALT. 


Fused Sensor Data enters the characterize function where it analyzes and outputs 


Characterized Data. This is forwarded to the act function where the DALT is computing 


Alerts and Recommendations based off the Characterized Data. The characterize phase 


also has a Sensor Tasking output that is ultimately relayed through the DFT to the sensors 


for its autonomous control. 
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Figure 18.  DALT Top-Level Functions IDEF0 
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Each of the two main functions that comprise the DALT is decomposed in the 


final two diagrams. The characterize phase shown in Figure 19 is where the DALT 


begins to use the decision logic to analyze the sensor data and make determinations in 


classification and threat. The Fused Sensor Data is continuously forwarded to the perform 


TMA, classify, and determine threat sub-functions. Target motion analysis is used as one 


of the primary means of determining threat level. It is a simple determination—the faster 


a contact is approaching or the more direct of an impact course, the higher the threat level 


determination.  


The classify function is determining what the contact is and its associated 


confidence. This is completely dependent on the fidelity of the sensor data inputs, and as 


such, classify function generates Sensor Tasking requests to get more information. The 


prioritize function takes in Threat Data and Sensor Tasking requests and establishes a 


hierarchy. In concept, the contact that will impact the earliest will likely get the highest 


priority. The prioritize function uses this hierarchy to update the Sensor Tasking to ensure 


sensor data is collected on the highest priority contact. 
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Figure 19.  C1 Characterize IDEF0 
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The last IDEF0 in Figure 20 decomposes the act function. In order to make an 


accurate Recommendations and Alerts, the functions need Countermeasure Status, system 


Health/Stores Status, Target Classification Data, and Threat Prioritization. ROE governs 


the recommend actions sub-function. The DALT utilizing the decision logic will still 


determine the best countermeasure pairing and deployment recommendations, but it will 


not recommend an attack until it determines ROE is satisfied. In concept, this most likely 


is at a specified range and that any unknown or enemy contact within it will get an attack 


recommendation. 
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Figure 20.  C2 Act IDEF0 
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C. DECISION-AID LOGIC ARCHITECTURE 


The logic process that the DALT utilizes is the DALP. The functional architecture 


described the inputs, outputs, interactions, and interfaces of the DALT and peripheral 


systems. The decision-aid logic architecture describes the logic process that is utilized by 


the DALT to characterize targets and provide recommendations and alerts to the operator. 


The functional identification and CONOPS described in chapter two form the basis of the 


decision-aid logic process. The underlying logic process is a series of if-then statements 


that the DALP continuously cycles through to determine recommendations and other 


outputs. As the DALP receives information, it is attempting to determine both the 


classification and threat posture of the unknown contact to formulate weapons pairing, 


engagement, or other recommendations. Figure 21 depicts a top-level architectural view 


of the logic process. 


 


Figure 21.  DALP Logic Architecture 
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D. DALP SYSTEM LOGIC 


The DALP continuously runs through a series of questions, which are similar to 


the thought process that a human operator uses, as it attempts to classify and determine 


the threat posture. Figures 22 and 23 illustrate the series of questions the DALP is 


continuously asking to determine classification and threat, respectively. There are varying 


levels of certainty based off what type of sensor data is available. For instance, during the 


initial target detection, there is likely only a single sensor in contact with the target, and 


the DALP will only be able to determine there is an unknown airborne contact based on 


the limited initial sensor data. If the DALP successfully corroborates the contact with 


additional sensor data or sensor data from multiple sensors in contact with the target, the 


confidence in target type can potentially increase. Based off the additional sensor data, 


the DALP assesses that the target sensor data is consistent with a UAS and determines 


that the target is a possible UAS. Figure 23 behaves similarly, but it is determining the 


threat posture rather than the classification. Both of these processes are happening in 


parallel. 


 


Figure 22.  DALP Classification Behavior 
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Figure 23.  DALP Threat Determination Behavior 


Table 8 describes the if-then logic the DALP uses to determine an engagement 


recommendation, optimal weapon pairing, countermeasures health status, and the risk of 


collateral damage. Note, the logic depicted in Figures 23 and 24 are resident in the 


engagement and weapons pairing logic. The input parameters are user configurable, 


which allows the operator to adjust for things such as collateral damage limits based on 


location specific factors and theater policies. 
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Table 8.   Engagement, Weapon Pairing, Health, and Collateral Damage 
Logic 


IF THEN RATIONALE 
Engagement Logic: 
 


• No Mode IV/V, and 
• It is man-made and 


o Method of determining if 
man-made: 
 Track has ESM or 


acoustic return 
correlated with 
track, or 


 Radar has valid 
ISAR return 


• It is unmanned, and 
o Method of determining if 


unmanned: 
 Size is consistent 


with small UAS, or 
 Acoustic signature 


is consistent with 
small UAS 


• Track has crossed ROE 
boundary, 


o ROE boundary defined as: 
 3 dimensional 


boundary, 
cylindrical shape 
over FOB 


 


 
Recommend 
paired weapon 
 


 
This logic is 
attempting to use all 
the data available to 
the DALP to prevent a 
fratricide incident and 
recommend an 
engagement to the 
operator based on 
threat characteristics. 
The DALP is unable 
to visually observe the 
target and therefore 
not able to determine 
if the target is armed 
or make a VID. The 
operator still has the 
ability to attempt VID, 
and the logic could 
recommend that the 
operator attempt to 
VID.  
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IF THEN RATIONALE 
Weapon Pairing Logic: 
 


• Target is closing, and 
• Not a FRIEND, and 


o Method of determining if a 
friend: 
 Receive valid Mode 


IV/V return 
• Not NEUTRAL, and 


o Method of determining if 
neutral: 
 VID determination, 


has to be made by 
operator 


• Target behavior 
o {[Target rate of closure 


(ROC) > 100 MPH] or 
[track course NOT steady 
(varies > +/5 deg)] } and 
[target range > = .5 miles] 
and [collateral damage = 
GOOD] and [missile health 
status and stores = GOOD]  
 Recommend Pair 


Missile 
o {[Target rate of closure 


(ROC) < 100 MPH] or 
[track course IS steady 
(varies < +/5 deg)] } and 
[target range < .5 miles] and 
[collateral damage = 
GOOD] and [net health and 
Stores = GOOD] 
 Recommend Pair 


Net 
o {[Target rate of closure 


(ROC) < 100 MPH] and 
[track course NOT steady 
(varies > +/5 deg)] and ESM 
detected} and [target range 
< .5 miles] and [collateral 
damage = GOOD] and 
[jammer health and Stores 
= GOOD] 
 Recommend pair 


jammer 
 


 
Pair weapon = 
_____ 
 


 
Weapon is paired based 
on factors that influence 
probability of hit based 
on target flight profile, 
collateral damage 
concerns, weapons 
health status 
information, and 
weapons stores 
inventory.  
 
NOTE: 
The values listed in blue 
need to be determined 
based on the target threat 
and ROE concerns. 
These values should be 
configurable based on a 
target threat.  
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IF THEN RATIONALE 
Health Status Logic: 
 


• Weapon not powered ON, or 
• BIT Failure or, 
• Stores count < 1 


 


 
Weapon health and 
stores logic = 
BAD 
 


 
A weapon will not be 
recommended if it is 
not powered on, fully 
operational, and stores 
are NOT available. 
 


Collateral Damage Logic: 
 


• Weapon max range splash point 
not clear, or 


o Method of determining: 
 Configuration 


setting based on 
land use around 
base 


• Friendly target <= 500 yards 
away, or 


• Neutral track <= 1000 yards 
away, or 


• Target debris field not clear 
Method of determining: 


o Configuration setting 
based on land use around 
base 
 Not a real-time 


assessment of 
splash point, based 
on known land 
use. 


 


Collateral damage 
= BAD 
 


Static collateral 
damage concerns can 
be entered based on 
where the system is 
deployed.  
 
The operator will have 
to make a real-time 
collateral damage 
assessment based on 
factors on the ground 
at that time. The 
DALP can make 
recommendations 
based on weapons 
characteristics and 
known land use. This 
data should be 
configurable based on 
system deployment 
locations.  
 
NOTE: 
The values listed in 
blue need to be 
determined based on 
the target threat and 
ROE concerns. These 
values should be 
configurable based on 
a target threat.  


 


Figure 24 illustrates a notional FOB layout in relation to obstructions or collateral 


damage concerns. The user can input the locations of buildings, obstructions, or other 


sensitive areas identified in theater specific policies. In turn, when the DALP identifies a 
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collateral damage issue, the DALT displays the location and alerts the operator if the 


countermeasure engagement has collateral damage risks. However, these are just alerts 


and the operator has the final authority. In this notional example, the DALT is generating 


an alert for the operator that identifies the collateral damage concerns due to a school and 


populated building in the vicinity of a potential target. 


 


Figure 24.  Collateral Damage Alert 


E. SUMMARY 


The functional analysis developed two important products—the functional 


architecture of the DALT and logic architecture of the DALP. The functional architecture 


identified, defined, and analyzed the inputs, outputs, interfaces, interactions, and 


functions of the logic tool with the other components in the C-UAS kill chain. The logic 


architecture described the foundation of the logic process. 


The functional architecture of the detect-to-engage sequence can be decomposed 


into five major sub functions: sense, fuse, analyze and recommend, authorize, and attack. 


The analyze and recommend sub function is further decomposed into the two main 
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functions performed by the DALT—characterize and act. The DALT functions are 


intended to replicate the functions performed by the operator and therefore reduce 


operator workload. The DALT would permit the operator to focus on the critical task of 


authorizing an attack. 


The functions, inputs, outputs, interfaces, and interactions in the detect-to-engage 


sequence can be allocated to the sensors, countermeasures, data fusion tool, operator, and 


the DALT. The DALP, which is implemented as part of DALT, shares many of its 


functions with the operator and is designed to provide more robust, accurate, and timely 


functionality. A human operator has the potential to get overwhelmed, distracted, or 


fatigued. The human operator can benefit from a DALT to facilitate faster decisions, a 


range of autonomy, and consistent results. Requirements were derived and decomposed 


to provide such functionality. 
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IV. MODELLING AND SIMULATION 


The research and work documented in this project report were used as the 


foundation to create a model and simulate a real-world scenario representing a UAS 


attack and C-UAS effort where the DALP concept is employed. Typical UAS and 


atypical or “bird like movement” were included in the modelling of three use cases. 


These were used as inputs to the DALP simulating the threat logic function and flow. 


Model verification was not a goal of this capstone and has not been completed. However, 


a verification plan was completed.  


A. MODEL ASSUMPTIONS AND LIMITATIONS 


The following assumptions and limitations are applicable: 


• Each UAS will be launched from positions that keep the UAS operator 


within visual line of sight of the UAS and the high value location. 


• The UAS has been weaponized.  


• The UAS approaching high value location will deliver payload as suicide 


or drop mission 


• Sensor degradation is not modeled or accounted for in the simulations. 


• Linear motion implies the object is man-made. 


• Non-linear motion implies the object is not-man-made. 


B. MODEL DEVELOPMENT  


The DALP functionality was modelled using ExtendSim (Imagine That Inc. 2013) 


to incorporate the requirements and logic into a usable and changeable simulation of real-


world UAS attack scenarios. Unmanned aerial system and non-UAS flight movement 


was modelled to test simulation use cases against the logic described in this report. Along 


with the UAS model, a basic sensor suite was modelled to show how common sensors 


like radar are used to identify and track an incoming UAS. The remaining part of the 
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model is the DALP itself, which uses sensor-derived inputs to analyze and make alerts or 


recommendations on the threat level and classification. While this model is rudimentary, 


it can easily be expanded upon to more closely match a real-world mission and in the 


future work section of this report. The model overview is depicted in Figure 25. 


 


Figure 25.  DALP Model Overview 


1. UAS Movement, Direction, and Location 


Movement can be either linear, semi-random, or fully random. The UAS heading 


is defined using variable inputs. Linear motion occurs when heading does not change for 


subsequent time cycles. Random motion occurs when heading varies for each time cycle. 


Semi-random motion occurs when heading varies for each time cycle, but the general 


direction of travel is toward a user defined location. The heading is a function of direction 


of travel. 


Direction of travel can vary anywhere between directly at or away from the high 


value location. This can be a constant or set as a variable. Variable direction is a function 


of time step and the level of randomness associated to the variability.  


The initial location of the UAS is defined using variable user inputs. Many 


considerations for initial position can be accounted for and can be either random or 


constant. These include max sensor detection range, max UAS travel distance, tactical 
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ranges, safe weapons delivery range, unsafe UAS proximity range, and counter-measure 


weapons range  


In the model, the UAS can move in a straight line or a random pattern from a 


randomly generated initial location toward a user defined destination or without a specific 


destination. The initial starting distance from the destination, although randomly 


generated, is defined within a max allowable distance from the high value target. The 


current model uses a representative UAS max range of approximately two miles as limit 


for the initial location. Additional movement details are in Appendix D. 


2.  Sensors 


The sensors were modelled to what a sensor suite would do with inputs from the 


UAS and what useful data the sensors could output to assist with the DALP, rather than 


modelled to a specific sensor suite (radar, EO/IR, ESM, or acoustic). The model 


essentially replicates the functionality of the DFT feeding in the data. Refer to  


Appendix D for additional sensor details. 


3. Decision-Aid Logic Process 


The actual logic processing was modelled as simple yes/no/unknown decision 


trees using the logic described previously. Refer to Appendix D for a detailed description 


and figure of the model. 


C. SIMULATION 


Using the model, a DALP recommendation for the threat level of a UAS against a 


fixed high value location can be simulated. Table 9 summarizes the model inputs and 


outputs that are described in detail in Appendix D. 
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Table 9.   Summary of Model Inputs and Outputs 


Model Inputs Model Outputs 


Motion 
Linear 


Identification 
Moving object is a bird 


Random Moving object is man 
made 


IFF 
Friendly 


IFF 
UAS is a friend 


Unknown UAS is not a friend 


Starting 
Position 


Random Countermeasure 
Range 


UAS not within range 


Set UAS within range 


Point moving 
towards 


Random 
Distance to high 
value target 


UAS is too close to 
high value target 


High-value location UAS is not too close to 
high value target 


  
Direction object 
is moving 


Object is moving 
towards the high value 
target 


  
Object is not moving 
towards high value 
target 


 


1. Use Cases 


There are five different use cases of the UAS that the model can simulate to show 


the different decisions that the DALP makes based on different inputs. 


a. Random motion 


This is a simulation of a bird to show that the DALP can determine that the object 


it is tracking is not man-made and therefore not a threat.  


b. Linear motion, not moving toward high value location 


This is a simulation of a UAS that is likely not an immediate threat to the high value 


location as it is not travelling straight at the location. 
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c. Linear motion, moving toward high value location 


This is a simulation of a UAS that is perceived as threat and is routed through the 


DALP logic where countermeasures would be recommended when it comes into range. 


 


d. IFF detected  


This simulated a friendly aircraft or UAS showing up on the high value location’s 


radar. The DALP recognizes this IFF signal and recommends de-escalates the threat and 


only monitors the friendly aircraft.  


e. Starting position too close  


The final use case is a simulation of an unknown object detected by the sensors at 


a location within the “no-fly zone” of the high value location. In this case, the DALP 


would recommend immediate attack to mitigate the threat.  


2. Decision-Aid Logic Simulation 


The DALP portion of the simulation used decision blocks or “gates” to represent 


the function of escalating or de-escalating the threat level of the scenario. As described in 


Appendix E, decision blocks process received information from sensor blocks and either 


adjust threat level accordingly or continue to monitor the UAS if warranted or drop track 


if determined a non-threat. DALP routes the object to exit the simulation as a non-threat 


if IFF is received or random motion is determined. Objects that do not exit simulation can 


either remain in the DALP processing region of the model or be routed out of DALP back 


into sensor monitoring for further data gathering and then back into DALP processing 


region. 


D. MODEL VERIFICATION AND OUTPUTS 


The model was verified with the use cases previously described by setting inputs 


to test how the DALP would react and route accordingly. Individual input variables to the 


model were changed for each scenario, including the motion pattern being linear or 


random, the starting position of the UAS/object, the location of the fixed high value 
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location, the direction of movement being either a fixed heading or toward a random 


location for each motion cycle, and finally if a UAS was sending out an IFF signal.  


Table 9 shows the inputs for individual use cases and the actions the DALP took in 


response to the inputs. The model was verified to work as intended per the pre-planned 


use cases, as shown in the outputs column of Table 9. Verification is described in detail 


in the Appendix D.  


Table 10.   Model Inputs with Corresponding DALP Action Outputs 


 Inputs Outputs 
Starting 
position 


Point 
moving 
towards 


IFF 
detected? 


DALP actions 


U
se


 C
as


e 


Random 
Motion 


Random Random No Assumed a bird, exited 
simulation 


Linear 
motion, not 
moving 
toward high 
value 
location 


Random High-value 
location 


No continued looping back 
through model as not a 
threat until within range and 
too close 


Linear 
motion, 
moving 
toward high 
value 
location 


Random High-value 
location 


No continued looping through 
model until within range 
and too close 


IFF detected Random High-value 
location 


Yes Assumed a friend, exited 
simulation 


Starting 
position too 
close 


Set below 
too close 
range 


High-value 
location 


No Attack recommendation, too 
close 


 


E. SUMMARY 


 The model was useful for the project for displaying equation steps and path, 


investigating logic basis and providing structure to thought process. ExtendSim allows 


users to time step through the simulation that showed the path allowing the logic to be 
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validated and, as necessary, updated. Motion was simulated where each cycle does not 


necessarily maintain the direction of the previous motion cycle. The general direction of 


travel toward a specific destination with either linear or random path is an available 


option and is based on user input variables.  


The model was sufficient to demonstrate that the DALP appropriately routed 


objects through the model and the simulation succeeded in determining threat based on 


characteristics and eliminating non-threat objects from further sensor processing. The 


model did not incorporate all coded logic as described in this report but was sufficient in 


capturing the intent and providing a foundational model that could provide a great 


resource for future efforts. 
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V. CONCLUSIONS AND FUTURE WORK 


Small, highly capable, and inexpensive UASs are commonplace, easily modified, 


and can be weaponized to aid the enemy in attacking U.S. interests. U.S. forces require a 


robust C-UAS system that satisfies all elements of the kill chain. There are multiple 


sensor and countermeasure solutions available that support each end of the kill chain, but 


very few that support the middle of the kill chain. Specifically, a DALP and tool that 


bridges the gap from detection to action (DALT) was missing. Therefore, the overall 


objective was to create a DALP and describe the DALT to enable the operator to reliably 


and repeatedly make the best tactical decisions in response to a dynamic threat 


environment. 


A. CONCLUSIONS 


The first product output was the CONOPS. The CONOPS described and 


illustrated conceptual ideas relating to the manner of use, locations, and general logic 


process. The CONOPS formed the basis for the functional analysis and modelling 


development. The functional analysis discovered, analyzed, decomposed, and allocated 


the various functions and sub-functions to the DALT, DFT, sensors, countermeasures, 


and operator. A series of IDEF0 diagrams were developed as the functional architecture 


of the future tool. They described the functions, interactions, and interfaces used in 


support of the DALT. 


The CONOPS, IDEF0s, and various other diagrams were used in the development 


of the decision-aid logic diagrams and if-then decision statements. This formed the 


foundation for the decision-aid logic process—reading sensor data, analyzing the data, 


and providing action recommendations and alerts to the operator. The logic examines 


target behavior and other characteristics to make a threat determination. Furthermore, the 


process also utilized autonomous sensor control for rapid sensor tasking as well as 


prioritized contacts based off their threat determination. 


The decision-aid logic and architectural diagrams were used to construct the 


model. The model was used to run simulations to test and validate the logic. Additionally, 
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the model was used to analyze the logic process each step of the way. Feedback from the 


model was used to update the functional architecture. 


The modeling and simulation experience gained by the DALP team was a 


valuable learning tool within the larger project. The model was useful for the project for 


displaying equation steps and path, investigating logic basis and providing structure to 


thought process. ExtendSim allows users to time step through the simulation that allowed 


the logic to be tested and validated. The model was sufficient to demonstrate that the 


DALP logic was correct.  


B. FUTURE WORK CONSIDERATIONS 


Due to limited time and personnel, the C-UAS DALP and DALT’s scope was 


narrow. Several research and development needs were identified and would make a good 


starting point for future work. This includes work on the model, other C-UAS systems, a 


graphical user interface or software packages, general and detailed hardware design, and 


automation. 


The model needs to expand to be able to test and validate more than just a portion 


of the DALP. Additional coding, analysis, and testing are needed to improve the 


robustness and usefulness of the model. A higher fidelity model could also be used to 


more accurately represent and simulate the timing aspects of the kill chain as well as the 


limits imposed by the ROE.  


As designed, the DALT can task sensors but not launch weapons. DALT provides 


recommendations to the operator for optimal countermeasure pairing and employment. 


There are concerns that this semi-autonomous design does not address the timing 


problems associated with the human’s weapons deployment decisions.  


The current capability also relies on the operator to verify rules of engagement 


and collateral damage risks and mitigation prior to making a decision to employ 


countermeasures. This requirement also increases the timing required for human 


decision-making. 
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A future DALT version should include a fully autonomous design that removes 


these human limitations. Simulations and resultant analyses of this higher fidelity more 


robust future model should provide data confirming these assumptions and validate the 


requirement. 


It is expected that the C-UAS system would add significant value if it were fully 


automated. It is likely that the DALT would completely replace the operator function in 


the C-UAS kill chain. 


Further research and additional model improvements should also incorporate 


sensor degradation, environmental affects, and a variety of threats and target signatures. 


This would provide a much more accurate representation of a real-world scenario. Also, 


incorporating multiple location variables to include terrain, climate, wildlife, population 


and obstacle or structure density would be useful in determining if additional capabilities 


and limitations would be of value. 


Lastly, efforts to transition beyond the conceptual phase and architectural design 


should include the development of a GUI, software, hardware, and a detailed system-


level design. Inevitably, the DALP and DALT will require updates as C-UAS kill chain 


specific equipment and functionality are added. The most pressing need at present is the 


DFT. 
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APPENDIX A.  ADDITIONAL DIAGRAMS 


Figure 26 depicts a concept of prioritization logic the DALP could use to 


determine which of multiple contacts to focus additional sensor tasking, alerts, and 


recommendations. 


 


Figure 26.  Sensor and Contact Prioritization Logic 


Figure 27 provides an alternate diagram of the kill chain logic. Similar to the 


other diagrams, factors such as closing rate, swarm characteristics, visual weapons, etc., 


are used to determine the level of threat and appropriate alerts and recommendations. 


Additionally, this depicts the logic not recommending an attack to an operator until the 


ROE has been satisfied and an appropriate threat determination made. 
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Figure 27.  Detailed Kill Chain Logic 


Figures 28 and 29 are similar to the diagrams provided in the CONOPS but 


explore additional scenarios. The first set of illustrations depict a target that is not on an 


intercept course and is determined not to be a threat. The second set illustrates a swarm 


attack and appropriate threat determination. 


 


Figure 28.  Phases in Non-inbound Scenario 
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Figure 29.  Phases in Swarm Scenario 


Figures 30 through 35 were developed with Innoslate and depict the flow of 


actions, inputs, and outputs of the five major systems in the C-UAS construct—target, 


sensors, DFT, DALT, countermeasures, and the operator. Figure 30 illustrates a target in 


motion that is emitting energy and sound, changing its range and bearing in relation to the 


sensor, and affected by the environment. 


 


Figure 30.  Target Action Diagram 
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Figure 31 describes the sensor actions as they detect a target, proceed to track, and 


then process the sensor tasking commands generated by the DALP and relayed through 


the DFT. Target emissions and relative range and bearing are inputted into the sensor that 


in turn outputs sensor data. Additional target emissions are used to track the target and 


provide updates to the altitude, course, speed, etc. Sensor tasking commands are inputted 


resulting in the sensors changing their modes or target. 


 


Figure 31.  Sensor Action Diagram 


Figure 32 describes the flow of actions through the DFT as it collects, fuses, and 


displays sensor data as well as relaying sensor commands and health and stores statuses. 


 


Figure 32.  DFT Action Diagram 
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Figure 33 describes the flow of actions of the DALP as it progresses from the 


initial input of correlated sensor data from the DFT to a recommended action. Correlated 


sensor data and target characteristics are continuously used to update the TMA, threat 


determination, prioritization, alerts, and recommendations. Sensor tasking commands are 


generated and sent to the DFT. ROE, if used, is a control input for when the DALP 


recommends an attack. 


 


Figure 33.  DALP Action Diagram 


Figure 34 describes the flow of actions as the operator progresses from noticing 


the initial target to attacking as necessary. Note, the DALP and operator have similar 


functions since they both use sensor information to characterize the target, but where they 


differ is that the DALP provides recommendations and the operator provides the 


authorization to attack. 
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Figure 34.  Operator Action Diagram 


Figure 35 describes the flow of actions as the countermeasures receive target data, 


allocate available stores, receive DALP and operator commands, and ultimately engage 


the target upon authorization. Additionally, the countermeasures are sending out health 


and stores statuses. 


 


Figure 35.  Countermeasure Action Diagram 
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APPENDIX B. DESIGN REFERENCE MISSION 


The decision logic operating scenario analyzed in this project will focus on the 


defense of a fixed high value location. The high value locations can vary from large 


urban gatherings such as concerts or sporting events, buildings, power plants to more 


remote military locations. Two scenarios will be utilized to assess the effectivity of the 


decision logic design in situations where the rules of engagement (ROE) will differ 


significantly. The ROE will vary depending on acceptable risk, threat levels, environment 


and available countermeasures. Scenario one focused on the defense of a military forward 


operating base (FOB) in a combat environment. Scenario two focused on the defense of a 


large sporting event in a major metropolitan area. 


A. DRM ASSUMPTIONS 


The following assumptions apply to both the scenarios: 


• Each UAS will be launched from positions that keep the UAS operator 


within visual line of sight of the UAS and the target location. 


• Each UAS is radio controlled. 


• Each UAS does not have the ability to autonomously fly to the target 


location and conduct its attack. 


• The operator must maintain control of the UAS throughout the attack. 


• For swarm attacks, each enemy UAS is separately controlled by an 


operator. Radio communication between each operator is used to 


coordinate the swarm attack mission. 


• Each UAS is assumed to have an explosive payload and be flown towards 


the fixed location with the intent to conduct a suicide attack.  


• The same sensors will be utilized for both scenarios. 







 78 


• Sensor degradation is not modeled or accounted for in the simulations. 


• The same countermeasures are available for both scenarios. 


B. SCENARIO ONE: MILITARY FORWARD OPERATING BASE (FOB) 


In the FOB defense scenario, the environment will be more rural and involve less 


air traffic compared to the sporting event scenario. The rural environment will present 


fewer collateral damage concerns based on an uninhabited perimeter surrounding the 


base. It is assumed the ROE is less restrictive, the area is rural with minimal foot traffic, 


and there is a smaller collateral damage risk, though there is still the possibility of 


restrictions and concerns of dropping the UAS on any inhabited area. Fratricide is a 


primary concern. 


The FOB defense scenario is assumed to take place in an environment 


representing rural Afghanistan. The FOB perimeter environment is uninhabited and foot 


traffic is considered to have a negligible impact on ROE. The air traffic surrounding the 


FOB is expected to be tightly controlled where unidentified air vehicle traffic is 


considered a likely threat. The primary concern effecting ROE determination is fratricide. 


C. SCENARIO TWO: LARGE SPORTING EVENT IN METROPOLITAN 
AREA 


In the sporting event scenario, the stadium will be located in a large urban 


environment. It will be assumed that routine, civilian air traffic will be part of the 


environment. It will also be assumed that the area in and around the stadium is densely 


inhabited that will raise collateral damage concerns. It is assumed the ROE is more 


restrictive, the area is urban with a high density of foot traffic, and there is a high risk of 


collateral damage. Fratricide is still a concern and there are likely restrictions and 


concerns about dropping a UAS in a populated area. 


The sporting event defense scenario is assumed to take place in a large U.S. city 


at an open-air stadium. The stadium perimeter environment is densely populated where 


foot traffic, local businesses, automobile traffic, and human habitation is considered to 


have a significant impact on ROE. Civil air traffic surrounding the stadium is expected to 
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be heavy but tightly controlled and monitored. UAS air traffic is assumed not permitted 


nor thoroughly controlled and is marginally monitored. An identified UAS is a primary 


threat concern. The primary concern effecting ROE determination in this scenario is 


collateral damage. 


D. SCENARIO ONE AND TWO CASES 


In each scenario, the DALP was presented with three attack methods. 


Additionally, the DALP will address the case where the target is a non-threat. The 


decision logic will utilize a functional flow that will attempt to detect a target, 


characterize its behavior, and then take action based on the accumulated threat.  


• Case one will involve a single small UAS attempting to mimic the flight 


profile of a bird (non-mechanical behavior, low, slow flyer).  


• Case two will involve a single small UAS being detected at a nominal 


range of X NM and flying at a speed of 250 kts.  


• Case three will involve a simultaneous attack by a swarm of 5–10 UASs 


conducting a multiple axis attack. 
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APPENDIX C.  REQUIREMENTS 


Although this capstone did not get into any hardware or software development, 


theoretic system-level requirements were developed. These were developed with the 


anticipate functions of the DALT and other C-UAS systems. The system-level 


requirements are allocated into the various system states the DALP can be in—initiation, 


maintenance, input, and output. 


A. INITIATION SEQUENCE REQUIREMENTS 


The initiation sequence requirements convey what the DALT needs during a start-


up sequence. This includes energizing the system, executing the program, start-up built-in 


tests (BIT), initial system self-check, and software and mission library health and 


currency indications. 


• The DALT system shall initialize when the DALT system is executed. 


• The DALT system shall perform a start-up BIT when the DALT system is 


executed. 


• The DALT system shall check software and mission library versions. 


• The DALT system shall provide software and mission library versions to 


the DFT for display to the operator. 


B. MAINTENANCE AND BUILT-IN TEST REQUIREMENTS 


The maintenance requirements convey the needs for varying types of maintenance 


including both planned and unplanned action items. These requirements will 


accommodate repairs, updates, upgrades, and any other maintenance activities. The built-


in test (BIT) requirements work in conjunction with the maintenance requirements by 


monitoring, identifying, displaying and, if necessary, alerting the DALT or user of the 


health and system status of all the subsystems. 


• The DALT system shall provide an operator initiated Built-In Test. 
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• The DALT system shall report BIT results to the DFT for display to the 


operator. 


• The DALT system shall run a continuous BIT on the countermeasures and 


DFT to generate health status. 


• The DALT system shall provide a Maintenance mode via operator 


controls for system software updates and maintenance. 


• The DALT system shall perform mission library loading. 


(i) The DALT shall have a physical interface that permits the 
connection and transfer of data from a mission library loader. 


(ii) The DALT shall have a logical interface that permits the transfer 
of data from a mission library loader to the DALT. 


C. INPUT REQUIREMENTS 


The input requirements describe any data, information, user inputs, input 


interfaces or any other items the DALT needs in order to operate. This includes all of the 


track and system data generated by the sensors, fused and corroborated in the data fusion 


tool and sent to the DALT. This also includes all of the BIT data the DALT needs to 


effectively monitor the health of all the subsystems. 


• The DALT system shall accept processed sensor data from the data fusion 


tool. 


(i) The DALT shall have a physical interface with the DFT that 
permits the transfer of sensor data from the DFT to the DALT. 


(ii) The DALT shall have a logical interface with the DFT that permits 
the transfer of sensor data from the DFT to the DALT. 


• The DALT system shall accept health status from the countermeasures. 
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(i) The DALT shall have a physical interface with the sensors and 
countermeasures, whether directly or through the DFT, that 
permits the transfer of health status to the DALT. 


(ii) The DALT shall have a logical interface with the sensors and 
countermeasures that permits the transfer of health status to the 
DALT. 


• The DALT system shall accept health status from the DFT. 


(i) The DALT shall have a physical interface with the DFT that 
permits the transfer of health status to the DALT. 


(ii) The DALT shall have a logical interface with the DFT that permits 
the transfer of health status to the DALT. 


• The DALT system shall accept stores inventory data from the 


countermeasures. 


(i) The DALT shall have a physical interface with the 
countermeasures that permits the transfer of stores inventory data 
to the DALT. 


(ii) The DALT shall have a logical interface with the countermeasures 
that permits the transfer of stores inventory to the DALT. 


• The DALT system shall accept mission configurable input data via 


operator input from the DFT. 


(i) The DALT shall have the capability to receive and read data input 
by the operator from an input device, whether directly or through 
the DFT. 


(ii) The DALT shall process acceptable data input by the operator. 


D. OUTPUT REQUIREMENTS 


The output requirements convey the majority of the actual decision-aid and logic 


functionality. This includes all of the analyzed track data, recommendations, alerts, and 


BIT status sent to a display or speaker as well as all of the output interfaces. This also 


includes the commands the DALT sends out for sensor operations. 
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• The DALT system shall send commands to the data fusion tool to 


command sensor operations. 


(i) The DALT shall have a physical interface with the DFT that 
permits the DALT to transmit commands to the DFT and all the 
sensors. 


(ii) The DALT shall have a logical interface with the DFT that permits 
the DALT to transmit commands to the DFT and all the sensors. 


• The DALT system shall output display and auditory data to the DFT or 


any other display. 


(i) The DALT shall have a physical interface with the DFT or display 
that permits the transfer of display and auditory signals generated 
from the DALT. 


(ii) The DALT shall have a logical interface with the DFT or display 
that permits the transfer of display and auditory data generated 
from the DALT. 


• The tool shall provide recommendations to the operator for characterizing 


targets via the DFT. 


(i) The DALP shall analyze any received sensor and user input data 
and utilize the logic to provide a recommendation on target 
characterization. 


(ii) The DALP shall determine a confidence level based off of the 
available sensor data. 


• The tool shall provide recommendations to the operator on sensor 


prioritization via the DFT. 
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(i) The DALP shall prioritize all observed contacts and command the 
sensor tasking in accordance with the prioritization. 


(ii) The DALP shall have an autonomous mode that permits the DALT 
to command and task sensors based off of the observed contacts 
and logic. 


• The tool shall provide recommendations to the operator on sensor 


employment via the DFT. 


(iii) The DALP shall utilize available sensor data, sensor health status, 
and decision logic to recommend an optimal sensor employment. 


• The tool shall provide recommendations to the operator on contact type 


via the DFT. 


(i) The DALP shall utilize available sensor data and decision logic to 
provide a recommendation on target type. 


• The tool shall provide recommendations to the operator for 


countermeasure pairing via the DFT. 


(i) The DALP shall utilize available sensor data, countermeasure 
health and system status information, and the decision logic to 
recommend the optimal type of countermeasure. 


• The tool shall provide recommendations to the operator for 


countermeasure employment via the DFT. 


(i) The DALP shall utilize available sensor data, countermeasure 
health and system status information, and decision logic to 
recommend the optimal employment of the countermeasure. 


(ii) The DALP shall have the capability to determine and list 
recommendations for all the countermeasures. 


• The DALT system shall direct advanced sensor functions (ISAR, Doppler, 


threat libraries) via the DFT. 
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(i) The DALT shall have a physical interface, whether directly or 
through the DFT, that permits the DALT to utilize advanced sensor 
functions. 


(ii) The DALT shall have a logical interface that permits the DALT to 
utilize advanced sensor functions. 
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APPENDIX D.  ADDITIONAL MODEL INFORMATION 


In this model, the sensor logic was coded using two equation blocks. One looked 


at the flight path to differentiate linear or non-linear/bird-like motion and if mode IV or V 


was present to determine IFF. The other used that derived motion to determine UAS 


range and heading. These equation block sensors are shown in Figure 28. 


A. SENSOR DATA 


The first “sensor” in the sensor processing section of the model used location and 


time inputs to output data on whether the detected object was moving linearly, likely 


man-made, or moving randomly, more likely to be a bird or other non-man-made object. 


Linear flight path was determined using the assumed and calculated distance an object 


would have traveled over two-time steps in a straight-line flight path this calculated 


distance was compared to the actual distance the object traveled. If the two distances 


were equal, the object was determined to be man-made. If the two distances were not 


equal, the object was determined to be not man-made. This simplified calculation 


functioned well in this modeling and simulation effort but is likely over-simplified for 


real-world applications. A more robust and higher fidelity model based from this model 


could be very beneficial for future efforts. The use of only two-time steps should be a 


focus of increased model and simulation fidelity.  


This modelled sensor processed the “IFFrand” variable that was created at the 


beginning of the simulation and passed an attribute to the DALP section of the model. 


This attribute indicated IFF status of the object to be either a friend or undetermined 


based on the presence of the IFF signal. IFF scanning is incorporated in most air defense 


radar systems.  


Threat determination process also begins in the first sensor. With a simple 


calculation using location and time step, the sensor block determined whether the object 


was moving directly or near-directly at the mission target. If the object is moving directly 


at the target, it is labeled a threat by the sensor.  
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The second sensor used motion inputs to determine how close the UAS was to the 


high value location. This is used later in the DALP logic to determine if the UAS was 


within range of the countermeasures and/or close enough to the high value target that the 


DALP recommended immediate countermeasures be taken 


Cameras: The camera section of the model was built by utilizing an expanded 


Johnson’s Criteria for detect, recognize and identify (DRI). Detection is defined as a 


computer being able to determine that there is a target of some kind in the field of view. 


Recognition is the ability for a target to be discerned between one type of object versus 


another, such as a combatant standing next to a tree versus a truck versus an aircraft. 


 Recognition also may include the ability to discern a flying aircraft from a bird or 


between types of aircraft, such as an airplane versus a quadcopter. Identification is the 


ability to discern a specific person or the model of a specific quadcopter. Identification is 


in the nearest field of view while detection is in the farthest field of view.  


The Johnson’s Criteria states that to detect a target, it must be seen by a minimum 


number of pixels. The same minimum criteria are applied to recognition and 


identification. Some of the variables that lead up to a camera’s ability to see clearly at 


great distance are: Lens, Sensor Size, and Fidelity of Sensor. Due to this variability, a 


single camera setup was chosen using a moderate level camera (720P) for the model. 


This is based off the moderate level camera, a maximum and a minimum distance was 


established for each of the DRI criteria (Sjaardema, Smith, Birch 2015).  


In the model, a Boolean simulation was created to transfer the probability of a 


criterion into a positive (did detect, recognize, or identify) or a negative (did not detect, 


recognize, or identify) result. In addition, recognize and identify criteria were set to 


negative in the event detect was also negative. The thought process is that a computer 


could not recognize a target if it first did not detect it. The same thought process was 


applied to the Identify criteria. 
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B. FLOW 


The progress through the DALP processing region of the modeled simulation is as 


follows: 


• Range. The DALP first determines if the UAS is too close to the mission 


target. If it is, it immediately recommends to attack. If it is not too close, 


the DALP moves on to the next block. 


• Linear track. If the sensor block of the model determines that the object is 


linear, the DALP increases the threat level and the UAS progresses to the 


next block. If the object is determined to be a bird, the DALP exits the 


model.  


• IFF. The next block takes input from the sensor on IFF. If no friendly 


signal is found (unknown friend-or-foe), the DALP routes the object to the 


next block. If an IFF signal is sensed, the DALP routes the object to exit 


the model.  


• Direction. If the object is determined to be heading directly at the target it 


is perceived as a threat and routed to the next decision block in DALP 


processing cycle. If the object is not moving straight at the target, the 


DALP routes the object to exit the model. 


• Attack. If the UAS has been routed through all the DALP processing 


section and is within countermeasure range, it is recommended that the 


UAS is attacked by routing through the attack exit block 


C. UAS MOVEMENT 


In the model, the UAS can move in a straight line or a random pattern from a 


randomly generated initial location toward a user defined destination or without a specific 


destination. The initial starting distance from the destination, although randomly 


generated, is defined within a max allowable distance from the destination and/or FOB. 
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The current model uses a representative UAS max range as limit for the initial location. 


The UAS initial location is a user input variable.  


Model cycles are based on a user defined delta time (dt). The change in time (dt) 


is important because most functions and code equations that model the movement of the 


UAS are based on this time parameter. It made sense to sync this (dt) with the maximum 


or limiting sensor cycle rate. It is also easily altered as required. 


UAS motion is simulated once per cycle (dt). Each cycle produces a linear 


movement, and the distance traveled is a function of user defined speed and the (dt). The 


model currently uses representative Type one UAS speeds in the range between 10 to 50 


ft/s. The motion was created in the base model as shown in Figure 27. Motion is 


simulated as entirely random, semi-random where a general direction is defined but the 


path is highly randomized, and non-random where path and direction are defined by user 


inputs. The random motion generator can use any of the distributions available in 


ExtendSim. 


The ExtendSim model is coded to determine the type of UAS motion as part of 


the DALP decision blocks. Model code uses position at the end of specific cycles and 


derives associated ranges. The difference between ranges and assumed travel distance, 


based on speed and (dt), is used to estimate direction of travel in relation to assumed 


location of FOB. This data is used in threat determination. If a UAS has been determined 


to be coming straight at FOB, it is an indication of a threat. If a UAS has been determined 


to be traveling away from the FOB, it is not considered a threat. There are infinite 


directions of travel between these two scenarios and a “tuning” factor (T) has been coded 


into model to account for this. If a UAS is approaching FOB but not on a direct route, it 


may still be considered a threatening approach. The tuning factor (T) allows a range of 


incoming directions to be considered threatening. 


D. DECISION-AID LOGIC PROCESS 


The actual logic processing was modelled as simple yes/no/unknown decision 


trees using the logic described previously. This is depicted in Figure 36. 
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• Blocks 305 and 190 use the range of the object from the mission target and 


determines if it is too close for further processing through DALP and must 


be shot down or can continue through DALP and routes accordingly.  


• Blocks 139 and 99 use flight path information from the first sensor to 


determine if the object is man-made or a bird and routes accordingly. 


• Blocks 212 and 108 uses IFF sensor data from the first sensor to determine 


friend or foe status and routes accordingly. Any input that is unknown is 


assumed to be foe. 


• Blocks 217 and 116 uses object heading information from the first sensor 


to determine whether the threat should be increased or not and routes 


accordingly.  


• If object remains in DALP and enters blocks 222 and 133, it is assumed to 


be at a high enough threat level to be attacked and determines if the object 


is within range of the countermeasures and is able to be shot down and 


routes accordingly. 


 


Figure 36.  DALP Model 
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E. VERIFICATION 


Figure 37 represents the random motion use case of the simulation. This was 


meant to simulate how a bird might fly in a random motion unlike a threatening UAS. 


The DALP monitored the motion through a few cycles, all with the motion far away from 


the high value location and recognized the motion as random and exited the model.  


 


Figure 37.  Random Motion Simulating a Bird 


In Figure 38, the UAS is moving linearly but it is moving away from the high 


value location. With these inputs, the DALP model continued cycling through the threat 


assessment blocks but did not exit or recommend an attack as the threat was never 


escalated due to the direction of motion of the UAS. 
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Figure 38.  Linear Motion, Not Moving Toward High Value Location 


A UAS moving toward the high value location linearly was the intention of this 


use case and is shown graphically in Figure 39. The DALP recognized the linear motion, 


recognized that the UAS was moving toward the high value location, and continued to 


monitor the UAS until it came first within range of the countermeasures. When it moved 


within the range of the countermeasures, it exited the model and recommending an 


attack. The UAS is attacked by routing through the attack exit block. 
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Figure 39.  Linear Motion, Moving Toward High Value Location 


The final use case validation showed that the DALP can recognize an IFF signal 


and route object to exit the simulation based on the de-escalated threat. Due to the fact 


that the model routed the object to exit immediately when DALP recognized the IFF 


determination, there is no flight path to indicate on a graph. 
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SUPPLEMENTAL 


The ExtendSim model used decision blocks to simulate the DALP to 


appropriately route a UAV through a threat level determining progression. The model 


derived threat levels via user input variable characteristics. The result was the removal of 


non-threatening objects from further sensor processing or an attack recommendation for 


objects achieving a significant threat level. 


The model is in two parts and is catalogued with this report by the Naval 


Postgraduate School and the Defense Technical Information Center. 
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